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Abstract
Lines of formation and decomposition of the hcp(ε) molybdenum deuteride
in the T –P phase diagram of the Mo–D system are constructed via the
measurement of isotherms of the electrical resistance of molybdenum in
a deuterium atmosphere at temperatures up to 550 ◦C and pressures up to
6 GPa. The diagram is compared to that of the Mo–H system studied earlier.
The pressure of phase equilibrium in both systems is shown to be much
closer to the decomposition pressure than to the formation pressure. A new
explanation is suggested for this asymmetry in the hysteresis loop that seems
to be characteristic of many metal–hydrogen systems. From the position of
the decomposition lines, the standard entropy, enthalpy and Gibbs energy of
formation are estimated for molybdenum deuteride and hydride.

1. Introduction

At present, T –P diagrams are constructed for most binary metal–hydrogen systems that form
hydrides at hydrogen pressures up to 9 GPa (see review [1] and recent papers [2–5]). In
particular, phase transformations in the Mo–H system were studied at pressures of up to 5 GPa
and temperatures up to 500 ◦C using in situ resistometry [6] and later up to 1200 ◦C using in
situ x-ray diffraction [5]. Phase transformations in metal–deuterium systems at high deuterium
pressures are studied to a much lesser extent. The T –P diagram was earlier constructed only
for the Ni–D system [7].

The present paper reports on the results of an experimental investigation of the high-
pressure T –P diagram of another metal–deuterium system, Mo–D. The effect of substitution
of D for H on phase transformations was of special interest in the case of the Mo–H system
characterized by a large hysteresis between the curves of formation and decomposition of
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Figure 1. Isotherms of the electrical resistance, R, of molybdenum in a D2 gas measured at 300 ◦C
in the course of a step-wise increase (solid circles) and decrease (open circles) in pressure. R0 is
the sample resistance under ambient conditions.

the hcp(ε) hydride [6]. This allowed testing the accuracy and applicability of the procedures
usually used to derive the equilibrium thermodynamic parameters of high-pressure hydrides
from the experimental T –P–c diagrams.

2. Experimental results

The technique used to compress gaseous deuterium to high pressures and to synthesize
deuterides is described in [8]. The electrical resistance of Mo in a compressed D2 gas was
measured with samples in the form of strips 3×1×0.05 mm3 cut from the same polycrystalline
foil of 99.98% molybdenum that had been used in [6] to construct the T –P diagram of the Mo–
H system. The resistance was measured by a dc four-probe method with platinum electrodes
welded to the sample. The pressure of deuterium was determined with an accuracy of ±0.3 and
±0.4 GPa, respectively, in the course of the pressure increase and decrease. The temperature
of the sample was measured accurately to within ±15 ◦C.

Representative isotherms of the electrical resistance of molybdenum in an atmosphere of
molecular deuterium are shown in figure 1. During the measurement, the sample was held
at each point until the resistance reached a stationary value and that final value was plotted
in the figure. In the intervals of the deuteride formation and decomposition, the resistance
drift lasted up to a few hours, which was significantly longer than in the Mo–H system [6]
and therefore indicated a slower rate of diffusion processes in the Mo–D system. The Mo–D
isotherms looked similar to the Mo–H ones and demonstrated large steps corresponding to the
formation and decomposition of the deuteride.

The pressures of formation and decomposition of molybdenum deuteride determined from
the midpoints of the steps in the isotherms measured at increasing and decreasing pressure,
respectively, are shown in figure 2(a). For comparison, figure 2(b) shows a diagram of the
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Figure 2. T –P phase diagrams (a) of the Mo–D system (symbols and solid curve, results of
the present paper) and (b) of the Mo–H system (symbols and solid curves are for the results
of [6], dashed curves of [5]). α is the dilute deuterium or hydrogen solid solution in bcc Mo; ε is
the approximately stoichiometric ε-MoD or ε-MoH compound with an hcp metal lattice; γ is the
molybdenum hydride with a fcc metal lattice. (1) The α → ε transformation at increasing pressure;
(2) the ε → α transformation at decreasing pressure; (3) the ε → α transformation at increasing
temperature. The horizontal and vertical bars show the experimental accuracy. The dashed and
dash–dotted curves in (a) show the results for ε-MoH taken from (b).

Mo–H system constructed in [6] in a similar way and in [5] using in situ x-ray diffraction.
The curves of formation and decomposition of molybdenum hydride from figure 2(b) are also
plotted in figure 2(a) using broken curves.

As seen from figure 2(b), three different Mo–H phases exist in the studied range of
hydrogen pressures and temperatures. These are the α-, ε- and γ -phase with a bcc, hcp
and fcc metal lattice, respectively. The triple point of the (α + ε + γ ) equilibrium is located at
around 4.5 GPa and 500 ◦C [5]. The solubility of hydrogen in bcc (α) molybdenum remains
very small even at high pressures [6, 5]. The ε-phase is molybdenum hydride with a NiAs-type
crystal structure, where hydrogen occupies octahedral interstices of the hcp metal lattice [9].
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The composition of the ε-hydride is close to the stoichiometry MoH throughout the studied
T –P region of its stability [6]. Judging by the lattice parameter of the γ -phase, it is also
hydride [5].

The structures and compositions of the α- and ε-phase in the Mo–D system are similar
to those in the Mo–H system. The ε deuteride has an hcp metal lattice with virtually the
same lattice parameters as the ε hydride [10]. In the present work, we analysed the deuterium
content of three Mo–D samples synthesized at a temperature of 325 ◦C and deuterium pressures
of 2.5 GPa (α-phase) and 5 and 7 GPa (ε-phase). Hot extraction gave the atomic ratio
D/Mo < 10−3 for the sample of the α-phase and D/Mo = 1.05 ± 0.03 for both samples
of the ε-phase.

As seen from figure 2, the formation pressures of ε-MoD are significantly higher than
those of ε-MoH at temperatures up to about 350 ◦C. The difference between the decomposition
pressures of ε-MoD and ε-MoH does not exceed the experimental error.

3. Discussion

3.1. Hysteresis

Our experiment does not give the pressures Peq of phase equilibrium between the α and ε phase.
Instead, we get pairs of the formation and decomposition pressures, Pf and Pd, measured at
a given temperature. The problem of localization of Peq inside the interval between Pf and
Pd in the metal–hydrogen systems has been debated for many decades, but still remains open.
According to one of the concepts, Peq is equidistant from Pf and Pd [11, 12]. According to
another, Peq is close to Pd [13–15]. As more and more experimental facts give evidence in
favour of the latter concept, it has beome widely accepted in the past few decades. However,
no plausible explanation has been advanced so far to account for the difference between the
processes occurring in the course of hydride formation and decomposition that makes the
hysteresis loop asymmetric. For example, both hydride formation and decomposition were
considered as processes of nucleation and growth of a new phase, and Pd was thought to be
close to Peq because the decomposition resulted in relaxation of the elastic forces generated
on hydrogenation [13]. If this statement were valid, it would be applicable to any phase
transformation accompanied by a volume change of the solid. For example, decomposition of
a well-relaxed hydride sample should also generate elastic forces, and these forces will relax
if the sample is hydrogenated again therefore leading to Pf close to Peq, which is never true.

We think the difference is in the mechanisms of hydride formation and decomposition.
Formation of most hydrides starts at the sample surface and the phase boundary moves inside
the sample remaining approximately parallel to the surface. Due to the large increase�V in the
metal volume on hydrogenation, this process necessitates the occurrence of macroscopic fluxes
of the material directed outwards and mostly perpendicular to the phase boundary. Generation
of such fluxes requires elastic forces of the order of the yield limit of the solid. By contrast,
decomposition of most hydrides proceeds via precipitation of hydrogen-depleted particles all
over the sample volume that minimizes stresses and strains. Thus, the elastic forces and
corresponding elastic deformations generated on hydrogenation should be much larger than
those on decomposition, therefore a much larger thermodynamic driving force �V (P − Peq)

is necessary to compensate for the additional elastic energy in the course of hydride formation.
Consequently, the span of the hysteresis loop is mainly determined by the elastic forces arising
on hydrogenation and reaching magnitudes of the order of the yield limit of the solid.

So far as high-pressure hydrides are concerned, nickel hydride is studied in more detail
and can serve for illustrations. In the course of hydrogenation, the growing layer of this
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hydride propagates inside the sample with the interface boundary remaining flat and parallel
to the sample surface [16]. On dehydrogenation, the hydrogen-depleted phase is formed by
nucleation and growth of particles throughout the sample volume [17].

The occurrence of macroscopic fluxes of the material under hydrogenation can be
illustrated by the changes in the geometrical dimensions of Ni rods caused by their
hydrogenation and dehydrogenation under high hydrogen pressure [18]. The hydrogenation of
a Ni rod about 0.7 mm in diameter and 6 mm long resulted in an approximately equal increase
of about 0.055 mm in its diameter and in its length. The rod therefore became thicker by about
8% and longer by only about 1%. After the dehydrogenation, the volume of the rod reverted
to the approximately initial value, but the sample got noticeably thicker and shorter.

As indicated in [18], the hydrogenation leads to the approximately equal increase in the
diameter, d , and in the length, l, of the Ni rod because by the moment when the boundary
of the hydrogenated material moving inwards from the cylindrical surface of the rod reaches
its centre, the boundary moving from the end of the rod will have travelled about the same
distance d/2. As the hydrogenated material mostly flows perpendicular to the boundaries, the
thickness of its layer therefore increases by approximately the same absolute value both in the
radial direction and along the axis of the rod. The dehydrogenation raises no macroscopic flux
of the material and results in a nearly uniform decrease in the sample volume thus conserving
the new value of the d/ l ratio acquired upon the hydrogenation.

Similar irreversible changes in the diameter and length were also observed in the course
of hydrogenation and dehydrogenation of Pd rods [19], the effect being apparently of the same
origin as in the case of Ni rods [18]. We think therefore that the occurrence of macroscopic
fluxes of the material and, correspondingly, of large elastic forces, is an intrinsic property
of the hydrogenation process in many metals. Since the character of hydrogenation and
dehydrogenation processes in molybdenum is likely to be qualitatively the same as in most
other metals, the hysteresis of the α ↔ ε transformation in the Mo–H and Mo–D systems
should also be determined for the most part by the elastic forces arising on hydrogenation.
Consequently, Peq in these systems should be much closer to Pd than to Pf .

3.2. �G0,�S0 and �H 0 derived from experiment

The accuracy in the determination of Pd in the Mo–H and Mo–D systems is comparable with the
baric hysteresis of the α ↔ ε transformation at temperatures above 200–250 ◦C (figure 2) and
Peq should be much closer to Pd than to Pf . It is therefore reasonable to assume that Peq = Pd

in this temperature range. Together with the negligibly small H and D solubility in bcc Mo
(α-phase) and the nearly invariable composition MoH or MoD of the ε-phase throughout its
stability region, this allows a simple thermodynamic analysis of the reactions

Mo + 1
2 H2 → MoH and Mo + 1

2 D2 → MoD.

In as much as the Gibbs free energy �G(Peq, T ) = 0 for the reaction in equilibrium
conditions and dG = V dP for each phase under isothermal conditions, the value of �G0(T )

reduced to the atmospheric pressure P0 = 0.1 MPa can be calculated as:

�G0
H(T ) =

∫ P0

PH
eq

�V dP =
∫ P0

PH
eq

(VMoH − VMo − 1
2 VH2) dP ≈ −βH PH

eq + 1
2

∫ PH
eq

P0

VH2 dP, (1)

where βH = VMoH − VMo ≈ 1.3 cm3 mol−1 MoH is the partial molar volume of hydrogen in
the solid phase [1] nearly independent of pressure and temperature; VH2(P, T ) is the molar
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Figure 3. Standard (P0 = 0.1 MPa) free
energy �G0(T ) of formation of ε-MoH and
ε-MoD.

volume of gaseous hydrogen. The equation for �G0
D(T ) has the same form:

�G0
D(T ) =

∫ P0

PD
eq

�V dP =
∫ P0

PD
eq

(VMoD − VMo − 1
2 VD2) dP ≈ −βD PD

eq + 1
2

∫ PD
eq

P0

VD2 dP (2)

with βD ≈ βH [10].
Figure 3 shows the �G0

H(T ) and �G0
D(T ) dependences calculated using the equations

of state of H2 and D2 from [20]. The point of decomposition of MoH and MoD at ambient
pressure (half-blackened circle) is unlikely to represent equilibrium because the process occurs
at a too low temperature of about 220 K. At temperatures exceeding 450 K, each of the three
dependences in figure 3 is approximately linear and therefore gives the nearly temperature-
independent value

�S0 = −(∂�G0/∂T )P

of the standard (i.e. corresponding to P = P0) entropy of formation of molybdenum hydride
and deuteride. The values of �S0 thus obtained are indicated in the figure.

As seen from figure 3, the values of �S0 for MoD from the present work and for MoH
from [5] are similar, while �S0 for MoH from [6] is significantly different. The difference
between the latter �S0 value and the former two values is rather due to the experimental scatter,
because the hydride and deuteride with the same structure and composition should have similar
�S0 values (see, e.g., [21] and references therein).

Figure 4 shows dependences of �G0/T versus 1/T constructed using the same calculated
values �G0

H(T ) and �G0
D(T ) as in figure 3. Linear interpolation of these dependences at

temperatures above 450 K gives the temperature-independent values

�H 0 =
[
∂(�G0/T )

∂(1/T )

]
P

of the standard enthalpies of formation of molybdenum hydride and deuteride indicated in the
figure. Here again the value for MoH from [6] significantly differs from those for MoH
from [5] and for MoD from the present work. Extrapolation of the linear dependences
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�G0/T = �H 0/T − �S0 shown in figure 4 to 1/T = 0 gives approximately the same
values of �S0 as those derived from the �G0 versus T plots in figure 3.

Figure 5 demonstrates the effect of variation of different terms in equation (2) upon the
�G0

D(T )/T versus 1/T dependence for the Mo–D system. As seen from comparison of the
results depicted by the open circles and solid triangles, the use of the P–V –T relations for
gaseous H2 instead of those for D2 results in insignificant changes. The total neglect of the
increase in the metal volume on deuteration (open squares in figure 5) leads to an approximately
35% overestimation of �H 0 and about 15% overestimation of �S0. As the βD value is known
with relative accuracy better than 10% [10], the inaccuracy in the βD Peq term of equation (2)
could not therefore noticeably affect the results of the �G0

D(T ) calculation.
Similar estimations based on equation (1) show that the changes in the thermodynamic

functions of MoH due to the possible inaccuracies of the calculations are also much smaller
than those due to the inaccuracy of the determination of Peq. This conclusion suggests, in its
turn, the low sensitivity of Peq in the Mo–H and Mo–D systems to errors in the calculation
of �G0. One could therefore expect that even rough additional thermodynamic estimations
would facilitate a more accurate determination of the α ↔ ε equilibrium line in the T –P
diagrams of these systems.

3.3. Interrelation between Peq in the Mo–H and Mo–D system

The difference �G0
HD between the standard formation energies of MoH and MoD is

�G0
HD = �G0

H − �G0
D = (G0

MoH − G0
MoD) − 1

2 (G0
H2

− G0
D2

). (3)

The difference G0
H2

− G0
D2

can be calculated using tabulated data of [22], which presents
the dissociation energies at T = 0 K and the temperature dependences of enthalpy and entropy
of gaseous H2 and D2 at P0 = 0.1 MPa. In the temperature range of interest, the calculated
difference depends on temperature nearly linearly:

G0
H2

− G0
D2

≈ 7400 + 14.46T [J mol−1 H2 and D2]. (4)
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The difference between the free energies of hydride and deuteride of a transition metal is
usually assumed to be close to the difference between the free energies of optical vibrations
of H and D atoms, the energies being counted from the bottom of the potential well for these
atoms in the hydride and deuteride, correspondingly [23]. H and D atoms in the metal are
usually considered as three-dimensional Einstein oscillators that gives:

G0
MoH − G0

MoD ≈ 3NAkT ln

[(
1 − exp

(
− h̄ωH

kT

))/(
1 − exp

(
− h̄ωD

kT

))]

− 3NA

2
(h̄ωH − h̄ωD), (5)

where h̄ω is the energy of the first harmonics, k is the Boltzmann constant and NA is the
Avogadro number.

The h̄ωH values of hydrides of most transition metals lie in the range 60–160 meV (see [24]
and references therein) and the h̄ωD values of the corresponding deuterides are usually close to
h̄ωH/

√
2. The strongest deviation from this harmonic behaviour was found for stoichiometric

PdH [25] and PdD [26], which have h̄ωH/h̄ωD ≈ 56 meV/37 meV ≈ 1.51.
The fundamental band of H optical vibrations in ε-MoH consists of a strong peak at

114 meV with a broad shoulder towards higher energies [27]. The centre of gravity of the
band is located at 117 meV, and this value can serve as an estimation of h̄ωH to be used
in equation (5). The vibrational spectrum of ε-MoD has not been studied yet, but one can
expect that h̄ωD lies somewhere in between the ‘ideal’ value h̄ωH/

√
2 and the ‘anharmonic’

value h̄ωH/1.51. Most probably, h̄ωD is nearer to h̄ωH/1.51 because the superconducting
temperature Tc = 1.11 K of ε-MoD is higher than Tc = 0.92 K of ε-MoH [10] and, by analogy
with the Pd–D and Pd–H phases [28], this inverse isotope effect can be attributed to the large
anharmonicity in the H vibrations.

Solid curves in figure 6 show the �G0
HD(T ) dependences for MoH/D calculated from

equations (3)–(5) using h̄ωH = 117 meV and two different values of h̄ωD = h̄ωH/
√

2 and
h̄ωD = h̄ωH/1.51. Comparison with figure 3 shows that the calculated values of �G0

HD are of
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√

2 and
h̄ωD = h̄ωH/1.51, where h̄ωH and h̄ωD are the first excitation energies of H and D optical vibrations
in ε-MoH and ε-MoD, respectively.

the same order of magnitude as the scatter in the estimations of �G0
H(T ) and �G0

D(T ). At the
same time, one can also see from figure 3 that the arrangement of the �G0 curve of MoD from
the present paper and the curve of MoH from [5] is in semiquantitative agreement with the
calculated �G0

HD(T ) dependences, while the curve for MoH from [6] demonstrates a small,
but opposite isotope effect. The interconsistency of the experimental results for MoD [6] and
MoH [5] suggests that they represent the α ↔ ε equilibrium even more accurately than could
be expected from the experimental error.

Additionally, in the case of MoD the experimental �G0
D/T versus 1/T dependence in

figure 4 and �G0
D versus T dependence in figure 3 demonstrate good linearity and thereby give

nearly temperature-independent values of the standard enthalpy and entropy of the reaction
over a rather large temperature range, which is a physically reasonable result. We can therefore
recommend the obtained values of �H 0

D ≈ −7 kJ mol−1 MoD and �S0
D ≈ −80 J K−1 mol−1

MoD for reference purposes.
More quantitative estimates of the isotope effect in the Mo–D/H system are possible if one

of the obtained temperature dependences of the standard Gibbs energy is assumed to represent
the α ↔ ε equilibrium. Let it be the dependence for MoD shown by the straight line in figure 4:

�G0
D,calc(T )/T = �H 0

D/T − �S0
D = −6740/T + 78.3 [J K−1 mol−1 MoD]. (6)

With �G0
H(T ) determined as �G0

H,calc(T ) = �G0
D,calc(T ) + �G0

HD(T ), where �G0
HD(T ) is

one of the two calculated dependences shown in figure 6, we get two �G0
H,calc/T versus 1/T

dependences represented in figure 7 by two thin lines. The �G0
H/T versus 1/T dependence

for the real Mo–H system should lie in between these thin lines. A linear approximation of
this dependence at temperatures from 500–800 K gives �H 0

H,calc ≈ −7580 J mol−1 MoH and
�S0

H,calc ≈ −78.4 J K−1 mol−1 MoH.
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�G0
D,calc(T ) is from equation (6), while �G0

HD(T ) are the two dependences from figure 6.

While the uncertainties in the �H 0 and �S0 values for both MoH and MoD are
large, the calculated differences �H 0

H,calc − �H 0
D,calc = −840 J mol−1 MoH and MoD and

�S0
H,calc − �S0

D,calc = 0.1 J K−1 mol−1 MoH and MoD are much more accurate. We can
therefore assume that MoH and MoD have virtually the same standard formation entropies
and that the standard formation enthalpy of MoH is about 1 kJ mol−1 more negative than that
of MoD. As the experimental results for MoD look most reliable, it is reasonable to consider the
values of �H 0

H = �H 0
D−1 ≈ −8 kJ mol−1 MoH and �S0

H = �S0
D ≈ −80 J K−1 mol−1 MoH

as most likely.
Substituting the �G0

D(T ) and �G0
H(T ) dependences shown in figure 7 into equation (2)

and (1), respectively, gives the PD
eq(T ) and PH

eq(T ) dependences plotted in figure 8. Similar to
figure 7, the curve of the α ↔ ε equilibrium in the Mo–H system is expected to lie in figure 8
between the two thin solid curves.

4. Conclusions

The large hysteresis of the α ↔ ε transformation in the Mo–H system is still greater in the Mo–
D system due to the lower diffusion rate of D in Mo. Experiment showed that the formation
pressures of ε-MoD are significantly higher than those of ε-MoH at temperatures up to about
350 ◦C, while the difference between the decomposition pressures of ε-MoD and ε-MoH does
not exceed the experimental error. This evidences that the pressure of the α ↔ ε equilibrium
in both Mo–H and Mo–D system is much closer to the decomposition pressure than to the
formation pressure, because the lines of the α ↔ ε equilibrium in the T –P diagrams of these
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Figure 8. Most plausible curves of the α ↔ ε equilibrium (see text) in the Mo–D system (thick
dashed curve) and in the Mo–H system (two thin solid curves) together with the experimental values
of decomposition pressure of ε-MoD (open symbols).

systems should be close to each other owing to the specific value h̄ωH ≈ 117 meV of the
hydrogen optical modes in ε-MoH.

It is widely believed that similar asymmetry in the hysteresis loop is typical of many
metal–hydrogen systems. No plausible explanation has however been advanced so far to
account for the difference between the processes occurring in the course of hydride formation
and decomposition that makes the hysteresis loop asymmetric. We think the difference is in
the mechanisms of hydride formation and decomposition. Formation of most hydrides starts at
the sample surface and the phase boundary moves inside the sample remaining approximately
parallel to the surface. Due to the large increase in the metal volume on hydrogenation, this
process necessitates the occurrence of macroscopic fluxes of the material directed outwards
and mostly perpendicular to the phase boundary. Generation of such fluxes requires elastic
forces of the order of the yield limit of the solid. By contrast, decomposition of most hydrides
proceeds via precipitation of hydrogen-depleted particles all over the sample volume that
minimizes stresses and strains. Thus, these are the elastic forces arising on hydrogenation that
mainly determine the span of the hysteresis loop.

At temperatures from 200–550 ◦C, the difference between the equilibrium pressures in the
Mo–H and Mo–D system estimated with h̄ωH ≈ 117 meV does not exceed the experimental
error of a few tenths of gigapascal in the evaluation of the hydride or deuteride decomposition
pressure. It is therefore reasonable to assume that the equilibrium pressure is equal to the
decomposition pressure, as is often done in the case of metal–hydrogen systems. This
approximation, however, does not result in a reliable evaluation of the standard thermodynamic
parameters of ε-MoH and ε-MoD from the position of the decomposition lines, because
the lines are not determined accurate enough for such a procedure. A simple comparative
analysis of thermodynamic properties of the Mo–H and Mo–D system allows a considerable
improvement of the accuracy of the evaluation. The recommended values of the standard
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enthalpy �H 0, entropy �S0 and the Gibbs energy �G0 = �H 0 − T �S0 under normal
conditions are:

�H 0
H ≈ −8 kJ mol−1 MoH,�S0

H ≈ −80 J K−1 mol−1 MoH,�G0
H ≈ +16 kJ mol−1 MoH;

�H 0
D ≈ −7 kJ mol−1 MoD,�S0

D ≈ −80 J K−1 mol−1 MoD,�G0
D ≈ +17 kJ mol−1 MoD.
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